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Abstract 

A concise geomet rodynamic  approach to q u a n t u m  theory  is in t roduced,  via a " q u a n t u m  
connec t ion"  Qt~, which is the  affine connect ion in Hilbert space. It is emphasized that  
this is the  simplest and mos t  natural  in terpreta t ion o f  q u a n t u m  mechanics  in general 
relativity and  yet  has been largely neglected, so that  m u c h  work remains to be done on 
it. The generalized Hilbert space has a simple Hermitian metric,  bu t  the  precise form of  
Q# remains  to be determined.  The " q u a n t u m  connec t ion"  is mathemat ica l ly  analogous 
to the  spinor connect ion,  which is discussed here for that  reason,  a l though the  spinor connect ion 
arises in the  first quant izat ion,  whereas  Qt~ geometr izes  the  second quantizat ion.  

1. Introduction 

It is well known that general relativity can be formulated on a non- 
hotonomic basis (Misner et al., 1973; Weinberg, 1972; Petrov, 1969), on 
which the space-time metric retains the Lorentz form (the same as in special 
relativity), and the space-time connection (the affine connection of the space- 
time manifold) can be expressed in terms of an orthonormal tetrad or vierbein 
e~ u, where the superscript # is a contravariant vector index, and the subscript o~ 
is the tetrad index. The e~U have covariant derivatives, 

e~a;v = eUa,~, + l ~ e a  a - ~a~e~ Is (1.1) 

using summation convention over repeated indices (/2, v, o for tensors, and 
a, ~, 3' for tetrad indices), where eU~ v = 3eaU/8xv (partial derivatives with 
respect to space-time coordinates xV), the p u  are Christoffel symbols (space- 
time connection coefficients on a holonomic basis), and the a)~u are the 
connection coefficients on the nonholonomic basis. 

At first thought, equation (1.1) could seem wrong, because a is often 
called a "scalar" index, in so-called "covariant" derivatives which omit co~v. 
However, it must be emphasized that a is not a scalar index, and derivatives 
which neglect the co~av are not covariant. Such misinterpretations obscure 
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the useful role of  a,/3, 3' as "Lorentz tensor" indices (Krause, 1975), subject 
to local Lorentz transformations, much as/l, p, o are subject to general co- 
ordinate transformations (Weinberg, 1972). 

The Lorentz metric, ~t3, ha s vanishing covariant derivatives, 

r/ag; u = -co~u1%/~ - co~g~,~ (1.2a) 

= 0 ( 1 . 2 b )  

imposing constraints on the co~., and assuring that they have the properties 
of pseudo-Riemannian connection coefficients (Helgason, 1962). 

~u and co~u are part of the classical theory of relativity, in which no The i ~ 
thought is given to quantization. 

When the first quantization is introduced, the spinor connection (Luehr, 
1974; Weinberg, 1972) is essential for a covariant treatment of the Dirac 
equation. 

When the second quantization (Roman, 1965) is introduced (hypothesizing 
complete quantization of  general relativity), a "quantum connection", 
defined as the affine connection in the Hilbert space of  the quantum 
mechanical state vector, is a natural vehicle for developing a theory of  
quantum geometrodynamics. 

The spinor and space-time connections are mathematically analogous to 
the quantum connection, and the analysis issimplified by the use of  a non- 
holonomic basis. 

The analogous properties of  the spinor connection are discussed, and then 
the quantum connection is introduced. 

2. Spinor Connection 

Equation (1.2) expresses the basic principle that the metric is an absolute 
constant. Similarly, the Dirac matrices, 7 ~, are absolute constants (Audretsch, 
1974), and, when expressed on a nonholonomic basis, have the same form as 
in special relativity. 

It is convenient to express the spinor connection, ~2~, in a closed form, 
as a 4 x 4 matrix, in terms of  which the 3`a have vanishing covariant derivatives, 

3';~ = 3,t3c~u + g2~3, ~ - 3,~f2~ (2.1 a) 

= 0 (2.1b) 

relating ~2 u to the co,u, and indicating that 3, ~ is a mixed second-rank spinor, 
as well as a contravariant "Lorentz  vector" on the tetrad index a (= 0, 1, 2, 3). 

The matrix ~2 u has complex coefficients, and a Hermitian conjugate ~2~. 
As in special relativity, the 3, ~ can be chosen so that (7°)  t = 3 ,°, and 
(3,i)t = -3, i, for i = 1, 2, 3. 

The spinor metric/3 then has the simple Hermitian form, 

/3 = 3  ̀0 (2.2) 
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and a vanishing covariant derivative, 

~;u = - ~ S 2 .  - S2*u~ 

=0  
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(2.3a) 

(2.3b) 

satisfying the requirement (/3;~) ? =/3;u , and indicating that 13 is a covariant 
second-rank spinor (just as ~,~ is a covariant second-rank "Lorentz tensor"). 

At first thought, equation (2.2) could seem wrong, because it equates 
quantities that have different transformation properties. What this means, of 
course, is that equation (2.2) is not covariant. It holds only on the non- 
holonomic basis used here. On a holonomic basis, the spinor and space-time 
metrics can be constructed from the Dirac matrics, but the relationships are 
more complicated, thus indicating one of the advantages of non-holonomic 
representations. 

For any matrix (9 acting as a linear operator in spinor space, it is useful to 
define the adjoint, 

¢ = ~ - 1 ~ ? ~  (2.4) 

Equation (2.3) =~I~ = - f2  u, i.e., f~u is skew-adjoint. It follows from the 
properties of the Dirac matrices that "~ = 7 a, i.e., the 3, ~ are self-adjoint, 
which is the property of "observables" in this formalism (observables are 
not represented by Hermitian operators unless the metric is Euclidean). 

~,~ represents the 4-velocity of the spinor particle. Introducing a 
4-component spinor field ¢, using geometrized units (Misner et al., 1973) 
with i = ( -1 )  1/2, and defining a 4-momentum operator, 

P,x =- ieo~U(3, + ~2 u) (2.5) 

where 0u ~- 3/3x ~, the generalized Dirac equation for a free particle of proper 
mass m, expressed on a nonholonomic basis, is 

7C~pa~0 = m~ (2.6) 

representing a quantum mechanical statement of the relationship between 
4welocity and 4-momentum, expressed in the language of the first quantiza- 
tion, in which f2u is the affine connection for the Hilbert space of ~p. 

A similar treatment is possible for the second quantization. 

3. Quantum Connection 

In the "Heisenberg picture" of non-relativistic and special-relativistic 
quantum theory (Roman, 1965), the second quantized state vector ~ is 
constant, i.e., independent of the space-time coordinates x ~ (p = 0, 1,2, 3), 
so that ~,~ = 0. 

In general relativity, in accordance with the "simplicity principle", which 
seeks the simplest and most direct generalization from the special to the 
general theory (Adler et al., 1965), this result should have the form 

~;u = 0 (3.1) 
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expressed in terms of a covariant derivative 

~;u = ~,~ + Q ~  (3.2) 

where Qu is the "quantum connection", i.e., a linear operator whose com- 
ponents function as affine connection coefficients (Eisenhart, 1928) in the 
second-quantized HUbert space (the infinite-dimensional complex vector 
space of ~). 

The general relativistic Hilbert space (a generalization of the usual Hilbert 
space) is assumed to have a Hermitian metric h = hr. In this respect, the 
Hilbert space is pseudounitary (Schouten, 1954), sometimes called unitary 
(just as pseudo-Riemannian spaces are sometimes called Riemannian). 

If ~ is constructed as a column matrix, so that the Hermitian conjugate 
~t  is a row matrix, then ~ adjoint can be defined as the row matrix 

~ -  ~ th  = (h~) t (3.3) 

Equations (3.2)-(3.3) then give the covariant derivative, 

~;.=#,. + #Q.  (3.4) 

with 

~u =-- h - '  Q~h (3.5) 

the adjoint of Q~, where h -1 is the inverse of h. 
For a normalized vector, ~ ff = 1, and the pure-state density operator is 

p = ~ ~ (3.6) 

Equations (3.5) and (3.6) ~" p = ~ -= h - l p t h ,  i.e., p is self-adjoint. 
If ~ is defined as a "contravariant" h vector (abbreviation for Hilbert 

space vector), then ~ is a "covariant" h vector, and p is a mixed second-rank 
h tensor (Hilbert space tensor). 

Another mixed second-rank h tensor is the identity operator, 

I = h - l h  = hh -1 (3.7) 

the mixed form of the metric. 
Since the metric is an "absolute constant", it follows that Ihas  vanishing 

covariant derivatives, 

I; ~ = Qls + 2# = 0 (3.8) 

indicating that Qt~ is skew-adjoint, in analogy to g2 u. 
Equations (3.6) and (3.8) give the covariant derivative of p, 

p;~ = p,~ + Q~p - pQ~ (3.9) 

noting the evident similarity between the commutator formalism (of quantum 
mechanics) and the connection formalism (of affine spaces). Equation (3.1) 
=~ p;u = 0, so equation (3.9) is a dynamical equation for p. 
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A pseudounitary transformation U is defined as a linear operator preserving 
the metric h through the isometry, 

m* hU = h (3.10) 

equivalent to 

(/r= U-' (3.11) 

indicating how U is a straightforward generalization of a unitary operator. 
It is a basic hypothesis that the symmetry transformations, i.e., the dynamical 

symmetries under which the generally covariant field equations are form 
invariant, are isometries of h, so that the linear symmetry transformations have 
a pseudounitary representation in Hilbert space, while the remaining sym- 
metries (those invoMng time inversion) (Wigner, 1959) are antilinear isometries. 

Under a space-time coordinate transformation expressible as a diffeomorphism, 

~u -> XJ3u (3.12) 

where X is the space-time representation of the symmetry, the corresponding 
Hflbert space representation is the automorphism, 

¢ ~ U¢ (3.13) 
where U is pseudounitary. 

There are then the associated transformations 

p ~ UpU -1 (3.14a) 

~ ;~ -+ X~v UJ/ ;v (3.14b) 

#;# "-> k.uUp;vU -1 (3.14c) 

Qu -+ XuVUQ/ U-I (3.14d) 
where 

Qv - Q v -  U-1U, v (3.15) 

F~uations (3.14a)-(3.14c) are tensor transformations, while equations 
(3.14d) and (3.15) indicate how Qu differs from a tensor when U = U(x), 
i.e., when Uhas a functional dependence on the xU. 

The Hilbert space metric, h, is expressed in a doubly covariant form, which 
has the same transformation property as the dyad, )~?)~. Equations (3.4) and 
(3.8) then give the covariant derivative, 

h;.  = h , .  - Q~h - hQu (3.16) 

while equations (3.5) and (3.8) give 

Q~h = -hQ~ (3.17) 

Since h is an absolute constant, equations (3.16) and (3.17) give 

h;u = h,u = 0 (3.18) 

indicating that h cannot have any dependence on the x u. 
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Consequently, without loss of generality, h can be chosen to have a diagonal 
form, with eigenvalues +1, so that 

h = h t =/~ = h -1 (3.19) 

where h is now Hermitian (h t = h), unitary (h ? = h-l) ,  self-adjoint (/~ = h), 
and pseudounitary (~ = h-l).  

In other words, h can be chosen to have the same form as in special 
relativity, where Hilbert space formalisms have already been constructed with 
an indefinite metric (Nagy, 1966). 

The difference, then, is in Q, = iP,, where P ,  = ¢~, so that P~ is setf- 
adjoint, has the units of 4-momentum, and can in fact be identified with a 
total 4-momentum operator in special relativity (Epstein, 1971), though not 
in general relativity. 

In special relativity, just as the space-time connection coefficients (the 
Pv" ~ and the co,v) and the spinor connection (£2~) vanish in an inertial frame, 
so Qv vanishes in the Heisenberg picture (the quantum analog of an inertial 
frame). In the Schr6dinger picture, on the other hand, Po becomes a 
Hamiltonian operator, reintroduced by equations (3.14d) and (3.15). 

In general relativity, just as inertial frames are at best local, the Heisenberg 
picture is at best a local picture, in that Q~ may vanish locally (at some values 
of the x~), but not globally (i.e., not throughout all space-time). Qu must then 
be determined from basic considerations, mathematically analogous to 
equation (1.1) (which relates the co~u to the l~w ), or equation (2.1) (which 
relates f2u to the co,u), or equally fundamental relationships entailed by the 
topological group structure of the affine spaces which have been hypothesized 
to formulate a relativistically covariant theory of quantum geometrodynamics. 

4. Conclusions 

The determination of the "quantum connection" Qg is an important un- 
solved problem in relativistic quantum field theory, and involves a natural 
generalization of the HamiItonian formalism (Ben-Abraham and Lonke, 1973). 
Despite the similarity of Q~ to f2~, the quantum connection has been 
approached only in rudimentary ways, while the spinor connection has been 
exhaustively analyzed. 

The approach here is not so much a quantization of general relativity as it 
is a geometrization of quantum theory, which Qg expresses in the language 
of geometrodynamics. 

Absolute constants, having different types of relativistic indices, are 
useful for relating the different types of affine connections. Such quantities 
having h-tensor indices are to be sought, as a means of constructing Qg, like 
equation (2.1) constructs ~2~, in terms of known functions. 
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